Progetti di ricerca internazionali
Pagina 1 di 6
Sail2Science - Engaging students with disabilities in marine chemistry research with recreational sailing
The project involves high school students and university students from Italy, Dubai and Maldives. Scientific measurements with the remote TNA sensor will be used mostly to educational purpose, the data will be collected during research campaign mostly carried out on… Leggi tutto sail boat but also on research ship, and focused on microplastic and emerging contaminants determination involving collection of samples of plankton, seawater air, sediments and benthic invertebrates.
Unraveling AhR Modulation for Advancements in Psoriasis Therapeutics
INTEGRANO - Multidimensional Integrated Quantitative Approach To Assess Safety And Sustainability Of Nanomaterials In Real Case Life Cycle Scenarios Using Nanospecific Impact Categories
In line with the current guidelines for Safe and Sustainable by Design (SSbD) chemicals and materials, INTEGRANO proposes a general assessment approach based on quantitative evidence to be applied in practice for specific Nano Materials (NMs) design cases referred… Leggi tutto to inorganic, organic and carbon NMs. The development NMs dedicated novel impact categories (ICs) for nano-toxicity and eco-nanotoxicity assessment will enable the integrated application of standardised assessment methodologies. The following four NMs Life Cycle Stages (LCS) are addressed: synthesis, incorporation, use phase and end-of-life. The application of the stage-gate SSbD process through the LCS addresses performance in the five dimensions (5D s): Safety, Environmental, Economic, Social and Functional. Generation of dedicated response functions will allow associating Key Decision Factors (KDFs, such as: concentrations, processing parameters, etc.) to Key Performance Indicators (KPIs, such as: occupational safety, CO2 emissions, job creation potential, NM cost, antibacterial functionality, etc.). SSbD NMs solutions will be obtained by Multi Objective Optimisation Design (MOOD) dedicated algorithm. A dedicated digital Decision Support Toolbox (DST) will elaborate design case specific data and run MOOD algorithm to sort the set of multi-optimal SSbD options, which are simultaneously complying with all the targeted KPIs referred to the 5Ds. The digital supported decision process will help scientists, material engineers, Nano-Enabled Products (NEPs) designers, policymakers and decision-makers to takle the SSbD challenge, allowing for dramatic reduction of Research & Development (RTD) and approval leadtime as well as minimising costs and increasing the transparency of the data, by making the industrial uptake of nanotechnologies more sustainable and viable. INTEGRANO allows the integration with other existing SSbD frameworks by transposing results into other scoring metrics and enabling data exchange.
Ocean liming in European seawater: a mesocosm scale approach
Playing with Corals: football as a gateway toward climate action and marine awareness
Rockfall runout modeling in Yosemite National Park, California, USA - RINNOVO
VINNY - Advanced nano encapsulation of bio-based pesticides and fertilisers for a circular and sustainable viticulture
The main objective of the VINNY is the development of sustainable, low-cost nanoformulated biopesticides (nanoBPs) and biofertilizers (nanoBFs) for contributing to more resilient vineyard systems. The application of VINNY nanoformulations will allow contributing to the ultimate switch from intensive to sustainable agriculture… Leggi tutto in viticulture, on a global scale. This will be achieved using natural-based green circular economy concepts: i) grapevine to grapevine plant full cycle approach where microbiome-based metabolites and bioactives from different vineyards in Europe (Portugal, Spain, Austria and Denmark) will be investigated to form potent cocktails with antifungal and plant protection properties and ii) industrial by-products, namely carbon and nitrogen (N), phosphorous (P) and potassium (K) NPK-rich actives from sludges, originated from local waste water treatment plants (WWTPs) in Austria and Denmark from meat industry (MI), to be used as biofertilizers. The project is focused on stabilization and boosting the efficacy of these actives by using 2 different bioplatforms: the nanoformulation/encapsulation of BPs and the impregnation on agrotextiles with BFs. The platforms will be based on biodegradable, renewable and abundant bioresources from plants or, in the case of biopesticides, on dynamically active nanoformulations, i.e., based on stimuli responsive biopolymers with capacity of releasing the active and improving their efficacy upon external stimuli (wind) and/or internal clues (enzymes in fungi). VINNY will then validate these platforms according to their efficacy using in vitro, ex vivo and in plant testing against vine prevalent pathogens and evaluate their biocompatibility, confirm the absence of nanotoxicity, and in field tests with the best performing candidates in 4 EU vineyards. Such end-to-end development approach will allow for the optimization and adaptation of viticultural practices towards higher grape quality and productivity
Characterization of maritime noise in different european basins and its impact on ecological relevant deuterostome invertebrates
CLARASAR - Characterising multi-stage landslide activity rates with synthetic aperture radar satellite data
Landslides are a significant hazard in mountainous environments. The advent of earth observation from space has hugely increased the scope of landslide studies and improved our understanding in terms of hazard mitigation, early warning, triggering mechanisms and mass-wasting effects. Occurrences of new… Leggi tutto landslides can be observed in optical satellite images, while slow-moving landslides can be monitored using satellite radar interferometry (InSAR). However, while the spatial coverage of landslide studies has been expanded by the availability of remote sensing datasets, a complete picture of landslide activity remains difficult to obtain from satellite imagery: optical satellite images are best-suited to detection of new landslides in vegetated environments, while inSAR is limited to slow-moving landslides. Current methods therefore struggle to detect multi-stage failure or reactivation of pre-existing landslide scars for fast-moving or incoherent deformation. Here I will develop new SAR-based techniques using amplitude and coherence time series to detect multi-stage failure and reactivations. I will test and apply these techniques at a range of spatial scales (individual large landslides up to regional inventories). I will apply to techniques to two case study areas (Nepal and Papua New Guinea) that have experienced landslides triggered by sequences of both earthquakes and rainfall. The case where landslides are triggered by a sequence of events is one where detection of multi-stage failure is particularly important: whether a landslide fails once or several times has implications for both hazard and erosion. By applying the new methods here alongside traditional remote sensing techniques, we hope to obtain a more comprehensive view of landslides than is currently possible.
Delivering workshops and guidance in environmental chemistry to female children living in small maldivian islands to inspire future scientific careers
Paginazione
- Pagina 1
- Pagina successiva