International Projects

Risultati 1 - 10 di 48

INTEGRANO - Multidimensional Integrated Quantitative Approach To Assess Safety And Sustainability Of Nanomaterials In Real Case Life Cycle Scenarios Using Nanospecific Impact Categories

In line with the current guidelines for Safe and Sustainable by Design (SSbD) chemicals and materials, INTEGRANO proposes a general assessment approach based on quantitative evidence to be applied in practice for specific Nano Materials (NMs) design cases referred Read more to inorganic, organic and carbon NMs. The development NMs dedicated novel impact categories (ICs) for nano-toxicity and eco-nanotoxicity assessment will enable the integrated application of standardised assessment methodologies. The following four NMs Life Cycle Stages (LCS) are addressed: synthesis, incorporation, use phase and end-of-life. The application of the stage-gate SSbD process through the LCS addresses performance in the five dimensions (5D s): Safety, Environmental, Economic, Social and Functional. Generation of dedicated response functions will allow associating Key Decision Factors (KDFs, such as: concentrations, processing parameters, etc.) to Key Performance Indicators (KPIs, such as: occupational safety, CO2 emissions, job creation potential, NM cost, antibacterial functionality, etc.). SSbD NMs solutions will be obtained by Multi Objective Optimisation Design (MOOD) dedicated algorithm. A dedicated digital Decision Support Toolbox (DST) will elaborate design case specific data and run MOOD algorithm to sort the set of multi-optimal SSbD options, which are simultaneously complying with all the targeted KPIs referred to the 5Ds. The digital supported decision process will help scientists, material engineers, Nano-Enabled Products (NEPs) designers, policymakers and decision-makers to takle the SSbD challenge, allowing for dramatic reduction of Research & Development (RTD) and approval leadtime as well as minimising costs and increasing the transparency of the data, by making the industrial uptake of nanotechnologies more sustainable and viable. INTEGRANO allows the integration with other existing SSbD frameworks by transposing results into other scoring metrics and enabling data exchange.

Responsabili: MANTECCA PARIDE
Data di inizio:
Data di fine:
Bando: Integrated approach for impact assessment of safe and sustainable chemicals and materials (RIA)
Enti finanziatori: EUROPEAN COMMISSION

Ocean liming in European seawater: a mesocosm scale approach

Responsabili: BASSO DANIELA MARIA
Data di inizio:
Data di fine:
Enti finanziatori: FONDATION PRINCE ALBERT II DE MONACO

Playing with Corals: football as a gateway toward climate action and marine awareness

Responsabili: MONTANO SIMONE
Data di inizio:
Data di fine:
Enti finanziatori: UEFA FOUNDATION FOR CHILDREN

Rockfall runout modeling in Yosemite National Park, California, USA - RINNOVO

Responsabili: AGLIARDI FEDERICO
Data di inizio:
Data di fine:
Enti finanziatori: US GEOLOGICAL SURVEY

CLARASAR - Characterising multi-stage landslide activity rates with synthetic aperture radar satellite data

Landslides are a significant hazard in mountainous environments. The advent of earth observation from space has hugely increased the scope of landslide studies and improved our understanding in terms of hazard mitigation, early warning, triggering mechanisms and mass-wasting effects. Occurrences of new Read more landslides can be observed in optical satellite images, while slow-moving landslides can be monitored using satellite radar interferometry (InSAR). However, while the spatial coverage of landslide studies has been expanded by the availability of remote sensing datasets, a complete picture of landslide activity remains difficult to obtain from satellite imagery: optical satellite images are best-suited to detection of new landslides in vegetated environments, while inSAR is limited to slow-moving landslides. Current methods therefore struggle to detect multi-stage failure or reactivation of pre-existing landslide scars for fast-moving or incoherent deformation. Here I will develop new SAR-based techniques using amplitude and coherence time series to detect multi-stage failure and reactivations. I will test and apply these techniques at a range of spatial scales (individual large landslides up to regional inventories). I will apply to techniques to two case study areas (Nepal and Papua New Guinea) that have experienced landslides triggered by sequences of both earthquakes and rainfall. The case where landslides are triggered by a sequence of events is one where detection of multi-stage failure is particularly important: whether a landslide fails once or several times has implications for both hazard and erosion. By applying the new methods here alongside traditional remote sensing techniques, we hope to obtain a more comprehensive view of landslides than is currently possible.

Responsabili: AGLIARDI FEDERICO
Data di inizio:
Data di fine:
Bando: MSCA Postdoctoral Fellowships 2022
Enti finanziatori: EUROPEAN COMMISSION

Delivering workshops and guidance in environmental chemistry to female children living in small maldivian islands to inspire future scientific careers

Responsabili: GALLI PAOLO
Data di inizio:
Data di fine:
Enti finanziatori: THE ROYAL SOCIETY OF CHEMISTRY

Habitat Trees: home for biodiversity

Responsabili: PADOA SCHIOPPA EMILIO
Data di inizio:
Data di fine:
Enti finanziatori: Maisons du Monde Foundation

Prevention of Geo-threats to Azerbaijan's Energy Independence

Responsabili: TIBALDI ALESSANDRO
Data di inizio:
Data di fine:
Enti finanziatori: N.A.T.O. - NORTH ATLANTIC TREATY ORGANIZATION

SIDS Joint Programme

Responsabili: GALLI PAOLO
Data di inizio:
Data di fine:
Enti finanziatori: UNITED NATIONS DEVELOPMENT PROGRAMME (UNDP)

BridgET - Bridging the gap between the land and the sea in a virtual environment for innovative teaching and community involvement in the science of climate change-induced marine and coastal geohazard.

BridgET aims at addressing a growing demand for highly skilled professionals in the coastal and marine geosciences sector, who can be innovative in visualization, analysis, model creation, interpretation and communication of geological and environmental data in 3D. Digital geologic mapping Read more is a mature technology, although dramatically improved recently with the advent of new state-of-the-art techniques such as Structure from Motion (SfM) photogrammetry and progress in computer vision and image analysis. Environmental reality-based 3D models can now be generated particularly through the aid of unmanned aerial vehicles (UAV). But the key advance has been the ability to easily construct high-resolution, photorealistic terrain models (as a base surface for 3D mapping) in the underwater environment. The submarine domain has always been less accessible and more economically challenging to investigate than the terrestrial one. But these technologies are now transforming field studies, enabling the resolution of problems that were extremely complex without technological progress, especially in industry (e.g. oil and gas, renewable energy, etc.), marine spatial planning and sustainable coastal and offshore environmental management practices. New methods and techniques have allowed a seamless combination of terrestrial and marine data, that is supporting the development of a more solid holistic approach to understand our changing environments and design appropriate management measures accordingly. The ability to easily examine multiple view angles of seamless seabed’s and coastal 3D surfaces, outside the logistical constraints, becomes even more efficient when 3D models can be experienced in Virtual Reality (VR). In this case, a true cognitive breakthrough is provided giving the potential to launch a new generation of studies as well as to promote inclusive teaching and learning that value the diversity of all learners and so actions for a sustainable future. Efforts are needed, however, to provide best practices for appropriate workflows when using VR in the field of coastal and marine geosciences in its many applications, and to outline how this technology can help inclusive 3D learning. The interdisciplinary European partnership of our project is made up by marine geoscientists and professionals with tracked expertise in geohazard assessment and climate-driven impacts in tectonically and/or climatically sensitive areas. The team will focus on learning and teaching how to build reality-based 3D model of selected submarine and coastal regions, to improve their exploration through the medium of VR, with a goal of developing an ad-hoc curriculum at postgraduate level to help students acquire and build their own advanced skills in these areas. BridgET aims at deeply renew the way in which applied marine geosciences can be taught, strengthening digital readiness, resilience and capacity in students. The most challenging impact we would like to achieve will be the promotion of a change toward a greater inclusion in the labor market commonly involved in delivering new tools, approaches, platforms and sensors for seafloor mapping, marine spatial planning and marine renewable energy, with the view of pursuing a more robust approach to diversity and inclusion in the field of marine geosciences, where there's a documented lack of diversity. The project is based on the delivery of innovative and inclusive learning and teaching activities through the organization of dedicated summer schools for MSc students. Schools will focus on giving students a hands-on experience of the variety of methods and approaches adopted in geospatial data acquisition and processing for the seamless generation of 3D models (i.e. Digital Terrain Models – DTM) of coastal regions. Three case studies will be selected to approach a coastal geohazard assessment based on an immersive observation of geomorphological data/geological phenomena and human interaction with physical processes from multiple perspectives. Practical activities will be in particular carried out in Santorini, on the shores and slopes of mount Etna and in Maldives. In Maldives we will take advantage of a research facility of the University of Milano-Bicocca (MaRHE - Marine and High Educational Research - Center), established in 2009 with the purpose of carrying our research and high education activities. All areas have been and are currently studied by project participants that already have collected consistent amount of data in these regions, that are particularly sensitive to a number of different geohazards and pose different challenges to the local population and socio-economic framework. We will prepare a defined multiscale and multisource geospatial datasets for each coastal regions that will be further supplemented with dedicated surveys during summer schools. Their geospatial integration will allow the creation of a VR learning environment (implementing the dataset with proper tools and dedicated software) that will allow all students and teachers to navigate in real-time and study and analyze processes and environments that otherwise would be impossible to observe. Students will test the application of their knowledge to provide coastal geohazard assessment and proposal for management measures, for each of the proposed case study (one for each summer school). All the involved universities will promote the inclusion of new approach for teaching and training activity, in the field of marine geosciences, in their educational program at MSc level. We planned three transnational project meetings to define and plan precisely, from the beginning and through the progress of the project, all project activities, especially the summer schools, the expected project results and the organization of two multiplier events.

Responsabili: SAVINI ALESSANDRA
Data di inizio:
Data di fine:
Bando: ERSAMUS -KA203 - Strategic Partnerships for higher education
Enti finanziatori: EUROPEAN COMMISSION