International Projects
Risultati 1 - 10 di 60
Ocean liming in European seawater: a mesocosm scale approach
Playing with Corals: football as a gateway toward climate action and marine awareness
Rockfall runout modeling in Yosemite National Park, California, USA - RINNOVO
VINNY - Advanced nano encapsulation of bio-based pesticides and fertilisers for a circular and sustainable viticulture
The main objective of the VINNY is the development of sustainable, low-cost nanoformulated biopesticides (nanoBPs) and biofertilizers (nanoBFs) for contributing to more resilient vineyard systems. The application of VINNY nanoformulations will allow contributing to the ultimate switch from intensive to sustainable agriculture… Read more in viticulture, on a global scale. This will be achieved using natural-based green circular economy concepts: i) grapevine to grapevine plant full cycle approach where microbiome-based metabolites and bioactives from different vineyards in Europe (Portugal, Spain, Austria and Denmark) will be investigated to form potent cocktails with antifungal and plant protection properties and ii) industrial by-products, namely carbon and nitrogen (N), phosphorous (P) and potassium (K) NPK-rich actives from sludges, originated from local waste water treatment plants (WWTPs) in Austria and Denmark from meat industry (MI), to be used as biofertilizers. The project is focused on stabilization and boosting the efficacy of these actives by using 2 different bioplatforms: the nanoformulation/encapsulation of BPs and the impregnation on agrotextiles with BFs. The platforms will be based on biodegradable, renewable and abundant bioresources from plants or, in the case of biopesticides, on dynamically active nanoformulations, i.e., based on stimuli responsive biopolymers with capacity of releasing the active and improving their efficacy upon external stimuli (wind) and/or internal clues (enzymes in fungi). VINNY will then validate these platforms according to their efficacy using in vitro, ex vivo and in plant testing against vine prevalent pathogens and evaluate their biocompatibility, confirm the absence of nanotoxicity, and in field tests with the best performing candidates in 4 EU vineyards. Such end-to-end development approach will allow for the optimization and adaptation of viticultural practices towards higher grape quality and productivity
Characterization of maritime noise in different european basins and its impact on ecological relevant deuterostome invertebrates
CLARASAR - Characterising multi-stage landslide activity rates with synthetic aperture radar satellite data
Landslides are a significant hazard in mountainous environments. The advent of earth observation from space has hugely increased the scope of landslide studies and improved our understanding in terms of hazard mitigation, early warning, triggering mechanisms and mass-wasting effects. Occurrences of new… Read more landslides can be observed in optical satellite images, while slow-moving landslides can be monitored using satellite radar interferometry (InSAR). However, while the spatial coverage of landslide studies has been expanded by the availability of remote sensing datasets, a complete picture of landslide activity remains difficult to obtain from satellite imagery: optical satellite images are best-suited to detection of new landslides in vegetated environments, while inSAR is limited to slow-moving landslides. Current methods therefore struggle to detect multi-stage failure or reactivation of pre-existing landslide scars for fast-moving or incoherent deformation. Here I will develop new SAR-based techniques using amplitude and coherence time series to detect multi-stage failure and reactivations. I will test and apply these techniques at a range of spatial scales (individual large landslides up to regional inventories). I will apply to techniques to two case study areas (Nepal and Papua New Guinea) that have experienced landslides triggered by sequences of both earthquakes and rainfall. The case where landslides are triggered by a sequence of events is one where detection of multi-stage failure is particularly important: whether a landslide fails once or several times has implications for both hazard and erosion. By applying the new methods here alongside traditional remote sensing techniques, we hope to obtain a more comprehensive view of landslides than is currently possible.
Delivering workshops and guidance in environmental chemistry to female children living in small maldivian islands to inspire future scientific careers
Habitat Trees: home for biodiversity
Prevention of Geo-threats to Azerbaijan's Energy Independence
SIDS Joint Programme
Pagination
- Previous page
- Page 2
- Next page